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Disentanglingq-Exponentials: A General Approach

C. Quesne1

We revisit theq-deformed counterpart of the Zassenhaus formula, expressing the
Jacksonq-exponential of the sum of two non-q-commuting operators as an (in gen-
eral) infinite product ofq-exponential operators involving repeatedq-commutators
of increasing order,Eq(A+ B) = Eqα0 (A)Eqα1 (B)

∏∞
i=2 Eqαi (Ci ). By systematically

transforming theq-exponentials into exponentials of series and using the conventional
Baker–Campbell–Hausdorff formula, we prove that one can make any choice for the
basesqαi , i = 0, 1, 2,. . . , of the q-exponentials in the infinite product. An explicit
calculation of the operatorsCi in the successive factors, carried out up to sixth order,
also shows that the simplestq-Zassenhaus formula is obtained forα0 = α1 = 1, and
α2 = 2, andα3 = 3. This confirms and reinforces a result of Sridhar and Jagannathan,
on the basis of fourth-order calculations.

KEY WORDS: quantum groups; quantum algebras;q-exponential;q-Zassenhaus
formula.

1. INTRODUCTION

Disentangling the exponential of the sum of two noncommuting operators into
an (in general) infinite product of exponential operators involving repeated com-
mutators of increasing order is a problem that occurs in many fields of physics, such
as statistical mechanics, many-body theories, quantum optics, and path-integration
techniques (see, e.g., Brif, 1996; Hatano and Suzuki, 1991; Suzuki, 1977; Wilcox,
1967; Witschel, 1975; Zhao, 1991). In particular, such a procedure may be em-
ployed to provide some useful approximation methods.

The problem is solved by applying the Zassenhaus formula, which was derived
by Magnus (1954) citing unpublished work by Zassenhaus. This formula is the dual
of the Baker–Campbell–Hausdorff (BCH) formula (Baker, 1902, 1903, 1904a,b;
Campbell, 1898; Hausdorff, 1906), expressing the product of two noncommuting
exponential operators as a single exponential operator in which the exponent is, in
general, an infinite series in terms of repeated commutators.
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Since their advent (Drinfeld, 1987; Faddeevet al., 1988; Jimbo, 1985, 1986),
quantum groups and quantum algebras have had an ever-increasing and broader
range of applications in mathematics and physics (see, e.g., Chaichian and
Demichev, 1996; Klimyk and Schm¨udgen, 1997; Majid, 1995). In developing
noncommutative aspects ofq-analysis, there has been a growing interest in getting
q-deformed counterparts of standard results of conventional analysis, such as the
BCH and Zassenhaus formulas.

In this respect, the simplest results are obtained for the Jacksonq-exponential
Eq(z) (Jackson, 1904), on the basis of the use of the Heine basic numbers of base
q, [n]q ≡ (1− qn)/(1− q) (Heine, 1847). This function is often referred to as the
maths-typeq-exponential to distinguish it from the phys-typeq-exponential for
which the symmetricq-numbers [n]q ≡ (qn − q−n)/(q − q−1) are employed.

A q-analogue of the BCH formula forEq(z) was derived by Katriel and
Solomon (1991). Later on, Katrielet al. (1996) proposed aq-analogue of the
Zassenhaus formula, wherein theq-exponential of the sum of two non-q-commut-
ing operators is expressed as an (in general) infinite product ofq-exponential oper-
ators involving repeatedq-commutators of increasing order. Recently, Sridhar and
Jagannathan (2002) derived another form of theq-Zassenhaus formula wherein,
unlike in the Katrielet al. formula, the bases of theq-exponential factors in the
infinite product are not the same. In both works, the operators in the successive
factors were determined up to fourth order in the two operators.

Such results raise two questions: Can one make any choice of bases for the
q-exponential factors in theq-Zassenhaus formula and, if so, for which choice of
bases does the formula take the simplest form? It is the purpose of this paper to
answer both of these questions.

To be able to carry out the analysis in general terms without making any
choice of bases from the very beginning, we shall adopt another procedure than
those previously employed. It is based on the repeated use of the conventional
BCH formula after expressing everyq-exponential as a standard exponential of a
series (Hardy and Littlewood, 1946).

This paper is organized as follows. The conventional BCH and Zassenhaus
formulas are reviewed in Section 2. In Section 3, after recalling the definition
and main properties of the Jacksonq-exponential, we determine the most general
form of theq-Zassenhaus formula. In Section 4, the explicit form of the operators
in the successive factors is determined up to sixth order to make an appropri-
ate choice for the bases of theq-exponentials. Finally, Section 5 contains the
conclusion.

2. CONVENTIONAL BCH AND ZASSENHAUS FORMULAS

In the next two sections, we shall make repeated use of the conventional BCH
formula for the product of the exponentials of two (in general) noncommuting
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operatorsX, Y,

exp(X) exp(Y) = exp

( ∞∑
i=1

Zi

)
, (2.1)

whereZi is a homogeneous polynomial of degreei in X, Y (therefore said to be
of i th order) and

Z1 = X + Y. (2.2)

Since for commuting operatorsX andY, Z1 is the only nonvanishing term in the
series on the right-hand side of Eq. (2.1), it is obvious that for noncommuting
operators, the additional termsZ2, Z3, . . . , all contain the commutator [X, Y].
Following, for instance, the method given by Wilcox (1967), one can easily find
the explicit expression of the BCH formula up to sixth order:

Z2 = 1

2
[X, Y]

Z3 = 1

12

(
[X, [X, Y]] − [Y, [X, Y]]

)
Z4 = − 1

24
[X, [Y, [X, Y]]]

Z5 = − 1

720
[X, [X, [X, [X, Y]]]]

− 1

120
[X, [X, [Y, [X, Y]]]] + 1

360
[Y, [X, [X, [X, Y]]]]

− 1

360
[X, [Y, [Y, [X, Y]]]] + 1

120
[Y, [X, [Y, [X, Y]]]]

+ 1

720
[Y, [Y, [Y, [X, Y]]]]

Z6 = 1

720
[X, [X, [X, [Y, [X, Y]]]]] − 1

360
[X, [Y, [X, [X, [X, Y]]]]]

+ 1

480
[Y, [X, [X, [X, [X, Y]]]]] − 1

480
[X, [X, [Y, [Y, [X, Y]]]]]

+ 1

160
[X, [Y, [X, [Y, [X, Y]]]]] − 1

480
[Y, [X, [X, [Y, [X, Y]]]]]

+ 1

1440
[Y, [Y, [X, [X, [X, Y]]]]] + 1

288
[X, [Y, [Y, [Y, [X, Y]]]]]

− 1

180
[Y, [X, [Y, [Y, [X, Y]]]]] + 1

360
[Y, [Y, [X, [Y, [X, Y]]]]] . (2.3)
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The Zassenhaus formula, which we shall generalize toq-exponentials, can
be written as

exp(A+ B) = exp(A) exp(B)
∞∏

i=2

exp(Ci ) (2.4)

whereCi is a homogeneous polynomial of degreei in A, B (therefore said to be of
i th order). All theCi ’s contain the commutator [B, A] and, using Wilcox method
(Wilcox, 1967) again, they can be determined up to sixth order:

C2 = 1

2
[B, A]

C3 = 1

3
[[ B, A], B] + 1

6
[[ B, A], A]

C4 = 1

8
([[[ B, A], B], B] + [[[ B, A], A], B]) + 1

24
[[[ B, A], A], A]

C5 = 1

30
([[[[ B, A], B], B], B] + [[[[ B, A], A], A], B])

+ 1

20
([[[[ B, A], A], B], B] + [[[ B, A], A], [ B, A]])

+ 1

10
[[[ B, A], B], [ B, A]]

+ 1

120
[[[[ B, A], A], A], A]

C6 = 1

144
([[[[[ B, A], B], B], B], B] + [[[[[ B, A], A], A], A], B])

+ 1

72
([[[[[ B, A], A], B], B], B] + [[[[[ B, A], A], A], B], B]

+ [[[[ B, A], A], A], [ B, A]]) + 1

24
([[[[ B, A], B], B], [ B, A]]

+ [[[[ B, A], A], B], [ B, A]]) + 1

720
[[[[[ B, A], A], A], A], A]. (2.5)

It should be noted that the infinite series and products in this section and the
next ones should be understood as formal ones and that their region of convergence
should be studied for any specific choice of operators.
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3. GENERAL FORM OF THE q-ZASSENHAUS FORMULA

The Jacksonq-exponential2 is defined by (Jackson, 1904)

Eq(z) =
∞∑

n=0

zn

[n]q!
(3.1)

where

[n]q ≡ 1− qn

1− q
= 1+ q + q2+ · · · + qn−1 (3.2)

and

[n]q! ≡
{

1 if n = 0

[n]q[n− 1]q . . . [1]q if n = 1, 2,. . .
(3.3)

It has a finite radius of convergence [∞]q = (1− q)−1 if 0 < q < 1, but converges
for all finite z if q > 1 (Exton, 1983). It is the eigenfunction of the Jacksonq-
differential operator

Dq Eq(αz) = αEq(αz) (3.4)

where

Dq f (z) ≡ f (z)− f (qz)

(1− q)z
(3.5)

and it goes over to the conventional exponential forq→ 1.
In the appropriate region of definition, theq-exponential can be expressed as

the exponential of a series

Eq(z) = exp

( ∞∑
k=1

ck(q)zk

)
(3.6)

where

ck(q) = (1− q)k−1

k[k]q
, k = 1, 2, 3,. . . . (3.7)

Although this formula can be traced back to Hardy and Littlewood (1946) and, as
quoted in their paper, may even have been known of other mathematicians before,
its simplicity and usefulness do not seem to have been fully appreciated in the
physical literature. For this reason, in the Appendix, we provide a proof of the
formula and derive from it some other interesting properties of theq-exponential.

2 Jackson has actually introduced two different kinds ofq-exponentials, related to one another by
inversion. The function considered in Eq. (3.1) is connected to one of them. It is referred to as the
Jacksonq-exponential in most works of modern physics.
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After these preliminaries, we are now in a position to generalize the Zassen-
haus formula (2.4) to theq-exponential (3.1) and to obtain the following result.

Proposition. For any choice ofαi , i = 0, 1, 2,. . ., such thatαi ∈ R, there exists
a representation of the q-exponential of the sum of two operators A, B as an (in
general) infinite product of the form

Eq(A+ B) = Eqα0 (A)
∞∏

i=1

Eqαi (Ci ), (3.8)

where C1 = B and Ci , i = 2, 3,. . . , are some homogeneous polynomials of degree
i in A, B.

Proof: Let α0, α1, α2, . . . , be any set of real numbers and define the operator
G(0) by

G(0) ≡ [Eqα0 (A)]−1Eq(A+ B)

= exp

(
−
∞∑

k=1

ck(qα0)Ak

)
exp

( ∞∑
k=1

ck(q)(A+ B)k

)
, (3.9)

where in the second step we used Eq. (3.6). The conventional BCH formula (2.1)
with X = −∑∞k=1 ck(qα0)Ak andY =∑∞k=1 ck(q)(A+ B)k allows one to rewrite
G(0) as

G(0) = exp

( ∞∑
k=1

G(0)
k

)
, (3.10)

whereG(0)
k , k = 1, 2,. . . , are some homogeneous polynomials of degreek in A,

B, andG(0)
1 = B sincec1(q) = c1(qα0) = 1.

Let nowG(1) be defined by

G(1) ≡ [Eqα1 (C1)]−1G(0), C1 ≡ G(0)
1 = B. (3.11)

On applying Eqs. (3.6) and (2.1) again,G(1) can be rewritten as

G(1) = exp

( ∞∑
k=2

G(1)
k

)
, (3.12)

whereG(1)
k , k = 2, 3,. . . , are some homogeneous polynomials of degreek in A,

B, and there is no first-order term due to the choice made forC1. Equations (3.9)
and (3.11) together lead to the relation

Eq(A+ B) = Eqα0 (A)Eqα1 (C1)G(1), (3.13)

whereG(1) is given in (3.12).
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Let us then assume that for somej ∈ R+, the relations

Eq(A+ B) = Eqα0 (A)

(
j∏

i=1

Eqαi (Ci )

)
G( j ) (3.14)

G( j ) = exp

( ∞∑
k= j+1

G( j )
k

)
(3.15)

hold for some homogeneous polynomialsCi (resp.G( j )
k ) of degreei (resp.k) in

A, B. On setting

G( j+1) ≡ [Eqα j+1 (Cj+1)]−1G( j ), Cj+1 ≡ G( j )
j+1 (3.16)

and using Eqs. (3.6) and (2.1), we get

G( j+1) = exp

( ∞∑
k= j+2

G( j+1)
k

)
, (3.17)

whereG( j+1)
k are some homogeneous polynomials of degreek in A, B. Hence

Eqs. (3.14) and (3.15) are valid whenj is replaced byj + 1. Furthermore, as
shown in (3.12) and (3.13), they hold forj = 1. This therefore completes their
proof by induction overj . ¤

For j →∞, we finally get the representation (3.8) ofEq(A+ B) as a formal
infinite product.

4. EXPLICIT FORM OF THE q-ZASSENHAUS FORMULA
UP TO SIXTH ORDER

In this section, we will apply the method presented in the previous one to
determine the explicit form of the first few operatorsCi . We will then make a
choice for the basesqαi to get the simplest formula.

To start with, since theq-deformed counterpart of the multiplicative prop-
erty of the conventional exponential reads (Cigler, 1979; Fairlie and Wu, 1997;
Schützenberger, 1953)

Eq(A)Eq(B) = Eq(A+ B) if [ B, A]q ≡ B A− q AB= 0, (4.1)

it is convenient to chooseα0 = α1 = 1 in Eq. (3.8). In this way, all the operators
Ci , i = 2, 3,. . . , will contain theq-commutator [B, A]q and therefore no terms
depending only onA or B.

For j = 0, 1,. . . , n− 1 successively, we then determine the polynomials
G( j )

k , k = j + 1, j + 2, . . . , n, of Eq. (3.15) up to some maximal ordern. This pro-
vides us with some explicit expressions forCi = G(i−1)

i , i = 2, 3,. . . , n, in terms
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of A, B, and of the coefficientsck(q), ck(qα2), . . . , defined in Eq. (3.7). Taking the
latter into account, theCi ’s are finally reexpressed in terms ofq-commutators.

Let us illustrate the procedure by giving detailed results forn = 3. We
successively get

G(0)
1 = B

G(0)
2 = c2(q)B2+

[
c2(q)+ 1

2

]
BA+

[
c2(q)− 1

2

]
AB

G(0)
3 = c3(q)B3+

[
c3(q)+ 1

2
c2(q)− 1

12

]
B2A+

[
c3(q)+ 1

6

]
BAB

+
[
c3(q)− 1

2
c2(q)− 1

12

]
AB2+

[
c3(q)+ c2(q)+ 1

6

]
B A2

+
[
c3(q)− 1

3

]
ABA+

[
c3(q)− c2(q)+ 1

6

]
A2B

G(1)
2 =

[
c2(q)+ 1

2

]
B A+

[
c2(q)− 1

2

]
AB

G(1)
3 =

[
c3(q)− 1

3

]
B2A+

[
c3(q)+ 2

3

]
B AB+

[
c3(q)− 1

3

]
AB2

+
[
c3(q)+ c2(q)+ 1

6

]
B A2+

[
c3(q)− 1

3

]
AB A

+
[
c3(q)− c2(q)+ 1

6

]
A2B

G(2)
3 = G(1)

3 (4.2)

from which we deduce that

C2 = G(1)
2 =

1

[2]q
(BA− qAB ) = 1

[2]q
[B, A]q (4.3)

and

C3 = G(2)
3

= 1

[3]q
[−q B2A+ (1+ q2)B AB− q AB2]

+ 1

[3]q!
[B A2− q(1+ q)AB A+ q3A2B]

= 1

[3]q
[[ B, A]q, B]q + 1

[3]q!
[[ B, A]q, A]q2. (4.4)
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Such expressions, which do not depend onα2, α3, . . ., coincide with those given
by Katrielet al. (1996) and by Sridhar and Jagannathan (2002).

With the help of Mathematica, we have calculated in the same way the next
terms up to sixth order. They can be written as

C4 = 1

[2]q[4]q
([[[ B, A]q, B]q, B]q2 + [[[ B, A]q, A]q2, B]q)

+ 1

[4]q!
[[[ B, A]q, A]q2, A]q3 + qa

[2]q[4]q[2]qa
[[ B, A]q, [B, A]q]q2−a (4.5)

C5 = 1

[3]q![5]q
([[[[ B, A]q, Bq], B]q2, B]q3 + [[[[ B, A]q, A]q2, A]q3, B]q)

+ 1

[2]2
q[5]q

([[[[ B, A]q, A]q2, B]q, B]q2 + [[[ B, A]q, A]q2, [B, A]q]q2)

+ 1

[2]q[5]q
[[[ B, A]q, B]q, [B, A]q]q2

+ 1

[5]q!
[[[[ B, A]q, A]q2, A]q3, A]q4 (4.6)

C6 = 1

[4]q![6]q
([[[[[ B, A]q, B]q, B]q2, B]q3, B]q4

+ [[[[[ B, A]q, A]q2, A]q3, A]q4, B]q)

+ 1

[2]2
q[3]q[6]q

([[[[[ B, A]q, A]q2, B]q, B]q2, B]q3

+ [[[[[ B, A]q, A]q2, A]q3, B]q, B]q2

+ [[[[ B, A]q, A]q2, A]q3, [B, A]q]q2)

+ 1

[2]2
q[6]q

([[[[ B, A]q, B]q, B]q2, [B, A]q]q2

+ [[[[ B, A]q, A]q2, B]q, [B, A]q]q2)

+ 1

[6]q!
[[[[[ B, A]q, A]q2, A]q3, A]q4, A]q5

+ qa

[2]2
q[6]q[3]qa

[[[ B, A]q, [B, A]q]q2−a , [B, A]q]q2+a

+ qb

[3]q[6]q[2]qb
[[[ B, A]q, B]q, [[ B, A]q, B]q]q3−b
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+ qb

[3]q![6]q[2]qb
([[[ B, A]q, B]q, [[ B, A]q, A]q2]q3−b

+ [[[ B, A]q, A]q2, [[ B, A]q, B]q]q3−b)

+ qb

[2]2
q[3]q[6]q[2]qb

[[[ B, A]q, A]q2, [[ B, A]q, A]q2]q3−b, (4.7)

where we have seta ≡ α2, b ≡ α3. It can be easily checked that forq→ 1, Eqs.
(4.3)–(4.7) give back the conventional results given in Eq. (2.5).

From such general results, it is clear that the simplest forms forC4 andC6

correspond to the choicea = 2, b = 3, in which case they become

C4 = 1

[2]q[4]q
([[[ B, A]q, B]q, B]q2 + [[[ B, A]q, A]q2, B]q)

+ 1

[4]q!
[[[ B, A]q, A]q2, A]q3 (4.8)

C6 = 1

[4]q![6]q
([[[[[ B, A]q, B]q, B]q2, B]q3, B]q4

+[[[[[ B, A]q, A]q2, A]q3, A]q4, B]q)

+ 1

[2]2
q[3]q[6]q

([[[[[ B, A]q, A]q2, B]q, B]q2, B]q3

+ [[[[[ B, A]q, A]q2, A]q3, B]q, B]q2

+ [[[[ B, A]q, A]q2, A]q3, [B, A]q]q2)

+ 1

[2]2
q[6]q

([[[[ B, A]q, B]q, B]q2, [B, A]q]q2

+ [[[[ B, A]q, A]q2, B]q, [B, A]q]q2)

+ 1

[6]q!
[[[[[ B, A]q, A]q2, A]q3, A]q4, A]q5, (4.9)

while C5 is independent of the choice made for the bases. Equation (4.8) agrees
with Sridhar and Jagannathan (2002), who stopped at fourth order. The calculation
of the next two terms, which we have carried out in this paper, strengthens the
conjecture made by these authors according to whichαi , i = 2, 3,. . . , should be
taken asαi = i .

In contrast, it is clear from Eqs. (4.5) and (4.7) that the choiceαi = 1, i =
2, 3,. . . , made by Katrielet al.(1996) leads to much more complicated expressions
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for C4 andC6, given by

C4 = 1

[2]q[4]q
([[[ B, A]q, B]q, B]q2 + [[[ B, A]q, A]q2, B]q)

+ 1

[4]q!
[[[ B, A]q, A]q2, A]q3 + q

[2]2
q[4]q

[[ B, A]q, [B, A]q]q (4.10)

C6 = 1

[4]q![6]q
([[[[[ B, A]q, B]q, B]q2, B]q3, B]q4

+ [[[[[ B, A]q, A]q2, A]q3, A]q4, B]q)

+ 1

[2]2
q[3]q[6]q

([[[[[ B, A]q, A]q2, B]q, B]q2, B]q3

+ [[[[[ B, A]q, A]q2, A]q3, B]q, B]q2

+ [[[[ B, A]q, A]q2, A]q3, [B, A]q]q2)

+q[[[ B, A]q, [B, A]q]q, [B, A]q]q3

+q[[[ B, A]q, B]q, [[ B, A]q, A]q2]q2

+q[[[ B, A]q, A]q2, [[ B, A]q, B]q]q2)

+ 1

[2]2
q[6]q

([[[[ B, A]q, B]q, B]q2, [B, A]q]q2

+ [[[[ B, A]q, A]q2, B]q, [B, A]q]q2)

+ 1

[6]q!
[[[[[ B, A]q, A]q2, A]q3, A]q4, A]q5

+ q

[3]q![6]q
[[[ B, A]q, B]q, [[ B, A]q, B]q]q2

+ q

[2]3
q[3]q[6]q

[[[ B, A]q, A]q2, [[ B, A]q, A]q2]q2, (4.11)

respectively. Equation (4.10) actually corrects their final expression, where we
have found a misprint in one of the terms.

5. CONCLUSION

In this paper, we have revisited theq-deformed counterpart of the Zassenhaus
formula that arises on replacing the conventional exponential of the sum of two
noncommuting operatorsA andB by the Jacksonq-exponential of the sum of two
non-q-commuting ones.
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We have proved that for any choiceqαi , αi ∈ R, i = 0, 1, 2,. . . , of the bases
of theq-exponentials, there exists a representation ofEq(A+ B) as an (in general)
infinite productEqα0 (A)Eqα1 (B)

∏∞
i=2 Eqαi (Ci ), whereCi are some operators of

increasing order inA, B.
To reproduce the multiplicative property of theq-exponential for

q-commutative operators, we have then selectedα0 = α1 = 1. With this choice
and leaving the remainingαi ’s arbitrary, we have finally obtained the explicit form
of the Ci ’s for i = 2, 3,. . . , 6. This has unambigously shown thatα2 = 2 and
α3 = 3 lead to the simplestq-Zassenhaus formula up to sixth order. Our work
therefore confirms and reinforces the Sridhar and Jagannathan (2002) conjecture,
derived from a study of fourth-order terms, according to which the best choice
should beαi = i , i = 2, 3,. . ..
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APPENDIX

In this Appendix we demonstrate Eqs. (3.6) and (3.7), and then use them to
obtain some interesting properties of theq-exponential.

Proving Eqs. (3.6) and (3.7) amounts to finding the Taylor expansion of the
logarithm of theq-exponential

ln Eq(z) =
∞∑

k=1

ck(q)zk. (A1)

In Pourahmadi (1984) (see also Sachkov, 1996), it has been shown that if the
functions f (z) =∑∞k=0 akzk andh(z) = ln f (z) =∑∞k=1 ckzk wherea0 = 1, are
analytic in some neighborhood of zero, then the Taylor coefficients ofh(z) satisfy
the recursion relation

ck = ak − 1

k

k−1∑
j=1

jak− j cj k = 2, 3,. . . (A2)

with c1 = a1. Applying this result to the logarithm of theq-exponential leads to
the relations

ck(q) = 1

[k]q!
− 1

k

k−1∑
j=1

j

[k− j ]q!
cj (q), k = 2, 3,. . . (A3)

c1(q) = 1. (A4)



P1: KEE

International Journal of Theoretical Physics [ijtp] pp1183-ijtp-485183 April 29, 2004 1:37 Style file version May 30th, 2002

Disentanglingq-Exponentials: A General Approach 557

It is straightforward to check that the solution of Eq. (A3), satisfying condition
(A4), is provided by Eq. (3.7). Inserting such an expression in Eq. (A3) converts
the latter into the relation

k∑
j=1

[
k
j

]
q

(1− q) j−1[ j − 1]q! = k, k = 2, 3,. . . (A5)

where [
k
j

]
q

≡ [k]q!

[ j ]q![k− j ]q!
(A6)

denotes aq-binomial coefficient (Exton, 1983). Equation (A5) can be easily proved
by induction overk by using the recursion relation[

k
j

]
q

= q j

[
k− 1

j

]
q

+
[

k− 1
j − 1

]
q

, j = 1, 2,. . . , k− 1. (A7)

We indeed obtain
k∑

j=1

[
k
j

]
q

(1− q) j−1[ j − 1]q!

=
k−1∑
j=1

[
k− 1

j

]
q

q j (1− q) j−1[ j − 1]q!

+
k−1∑
j=0

[
k− 1

j

]
q

(1− q) j [ j ]q! + (1− q)k−1[k− 1]q!

=
k−2∑
j=1

[
k− 1

j

]
q

q j (1− q) j−1[ j − 1]q! + 1

+
k−1∑
j=1

[
k− 1

j

]
q

(1− q) j−1(1− q j )[ j − 1]q!

=
k−1∑
j=1

[
k− 1

j

]
q

(1− q) j−1[ j − 1]q! + 1

= (k− 1)+ 1, (A8)

where in the last step use has been made of the induction hypothesis.
Equations (3.6) and (3.7) can be applied to derive the following properties

of the q-exponential, already quoted in Ubriaco (1992) (where we have corrected
some misprints),

Eq(z)Eq−1(z) = 1 (A9)
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Eq(z)Eq(−z) = Eq2

(
1− q

1+ q
z2

)
(A10)

Eq([n]qz) =
n−1∏
m=0

Eqn(qmz), n = 2, 3,. . . (A11)

as well as a generalization of Eq. (A10),

n−1∏
m=0

Eq(e2π im/nz) = Eqn

(
(1− q)n−1

[n]q
zn

)
, n = 2, 3,. . . (A12)

The proof of these relations is based upon the multiplicative property of the ordinary
exponential, exp(x) exp(y) = exp(x + y), and on some elementary properties of
the coefficientsck(q), defined in (3.7),

ck(q−1) = (−1)k−1ck(q) (A13)

2c2k(q) =
(

1− q

1+ q

)k

ck(q2) (A14)

[n]qkck(qn) = ([n]q)kck(q) (A15)

ncnk(q) =
(

(1− q)n−1

[n]q

)
ck(qn). (A16)

REFERENCES

Baker, H. F. (1902).Proceedings of the London Mathematical Society, 34, 347.
Baker, H. F. (1903).Proceedings of the London Mathematical Society, 35, 333.
Baker, H. F. (1904a).Proceedings of the London Mathematical Society, 2, 293.
Baker, H. F. (1904b).Proceedings of the London Mathematical Society, 3, 24.
Brif, C. (1996).Physical Review A, 54, 5253.
Campbell, J. E. (1898).Proceedings of the London Mathematical Society, 29, 14.
Chaichian, M. and Demichev, A. (1996).Introduction to Quantum Groups, World Scientific, Singapore.
Cigler, J. (1979).Monatsch. Math., 88, 87.
Drinfeld, V. G. (1987). InProceedings of the International Congress of Mathematicians, Berkeley,

1986, A. M. Gleason, ed., American Mathematical Society, Providence, RI, p. 798.
Exton, H. (1983).q-Hypergeometric Functions and Applications, Ellis Horwood, Chichester, UK.
Faddeev, L., Reshetikhin, N., and Takhtajan, L. (1988). InAlgebraic Analysis, M. Kashiwara and T.

Kawai, eds., Academic Press, New York, Vol. 1, p. 129.
Fairlie, D. and Wu, M. (1997). The reversedq-exponential functional relation, q-alg/9704013.
Hardy, G. H. and Littlewood, J. E. (1946).Proceedings of Cambridge Philosophical Society, 42, 85.
Hatano, N. and Suzuki, M. (1991).Physics Letters A, 153, 191.
Hausdorff, F. (1906).Ber. Verhandl. Saechs. Akad. Wiss. Leipzig, Math.-Naturw. Kl., 58, 19.
Heine, E. (1847).J. Reine Angew. Math., 34, 285.
Jackson, F. H. (1904).Edin. Math. Soc., 22, 28.
Jimbo, M. (1985).Lett. Math. Phys., 10, 63.



P1: KEE

International Journal of Theoretical Physics [ijtp] pp1183-ijtp-485183 April 29, 2004 1:37 Style file version May 30th, 2002

Disentanglingq-Exponentials: A General Approach 559

Jimbo, M. (1986).Lett. Math. Phys., 11, 247.
Katriel, J., Rasetti, M., and Solomon, A. I. (1996).Lett. Math. Phys., 37, 11.
Katriel, J., and Solomon, A. I. (1991).Journal of Physics A: Mathematical and General, 24, L1139.
Klimyk, A. and Schm¨udgen, K. (1997).Quantum Groups and Their Representations, Springer, Berlin.
Magnus, W. (1954).Communications on Pure and Applied Mathematics, 7, 649.
Majid, S. (1995).Foundations of Quantum Group Theory, Cambridge University Press, Cambridge.
Pourahmadi, M. (1984).Amer. Math. Monthly, 91, 303.
Sachkov, V. N. (1996).Combinatorial Methods in Discrete Mathematics, Cambridge University Press,

Cambridge, UK.
Schützenberger, M. P. (1953).Comptes Rendus Hebdomadaires des Séances de l’Acad́emie des Sci-

ences, Paris, 236, 352.
Sridhar, R. and Jagannathan, R. (2002). On the q-analogues of the Zassenhaus formula for disentangling

exponential operators. (math-ph/0212068). To be published inProceedings of the International
Conference on Special Functions, Chennai, 2002.

Suzuki, M. (1977).Communications in Mathematical Physics, 57, 193.
Ubriaco, M. R. (1992).Physics Letters A, 163, 1.
Wilcox, R. M. (1967).Journal of Mathematical Physics, 8, 962.
Witschel, W. (1975).Journal Physics A: Mathematical and General, 8, 143.
Zhao, Z. S. (1991).Journal of Mathematical Physics, 32, 2783.


